LVAD As Destination Therapy
Gilbert H. Mudge, MD
Professor of Medicine
Harvard Medical School
President, Partners HealthCare International
December 5, 2012
No Disclosures

Circulatory Support Strategies

- Intra-aortic balloon pump (IABP)
- Percutaneous Ventricular Assist Device (pVAD)
 Tandem Heart
 Impella Recovery System
- Extracorporeal Membrane Oxygenation (ECMO)
Components of the Ventricular Assist Device

Traditional Terminology

- **Destination Therapy (DT)**
 longterm mechanical circulatory assist device for patients who have contraindications to cardiac transplantation
- **Bridge to Transplant**
- **Bridge to Recovery**
- **Bridge to Candidacy**

- But, Bridge to Decision preferred
The New England Journal of Medicine

LONG-TERM USE OF A LEFT VENTRICULAR ASSIST DEVICE FOR END-STAGE HEART FAILURE

ERIC A. ROSE, M.D., ANNETTE C. GELLIS, PH.D., ALAN J. MOSKOWITZ, M.D., DANIEL F. HEIJNAJ, PH.D., LYNN W. STEVENSON, M.D., WALTER DEMBITSKY, M.D., JAMES W. LONG, M.D., PH.D., DEBORAH D. ARSHEM, M.D., ANITA R. TIERNEY, M.P.H., RONALD G. LEVITAN, M.SC., JOHN T. WATSON, PH.D., AND PAUL MEGE, PH.D., FOR THE RANDOMIZED EVALUATION OF MECHANICAL ASSISTANCE FOR THE TREATMENT OF CONGESTIVE HEART FAILURE (REMATCH) STUDY GROUP*

REMATCH Trial

Magnitude of Survival Benefit with LVAD DT Therapy

NEJM 2009; 361(23): 2241-51
NEJM 2001; 345(20): 1435-43
200 patients randomized in 2:1

continuous flow (n=134) vs pulsatile flow (n=64) device

transplant ineligible; refractory symptoms; optimal medical therapy
DT Trial CAP: Conclusions & Inference

Conclusions

- Trend towards improving survival
 - Fewer deaths from hemorrhagic stroke
- Significant reductions in adverse events:
 - Hemorrhagic stroke >50% reduction
 - Device related infections >35% reduction
 - Sepsis >25% reduction
- Both QoL measures (KCCQ and MLWHF) demonstrated significant improvement over baseline values

Source: Park SJ, AHA 2010

What is the magnitude of absolute survival benefit with LVAD DT therapy?

LVAD in the Real World
Interagency Registry for Mechanically Assisted Circulatory Support

- National Heart Lung & Blood Institute (NHLBI)–sponsored collaborative database

- collects information on durable mechanical circulatory support (MCS) device implants in the United States.

- prospective patient enrollment & data collection June 23, 2006

- June 23, 2006 - September 30 2010

 2868 patients implanted with 1 or more MCS devices

- data from 79 MCS centers; 69 designated as DT MCS centers
Current actuarial survival with continuous-flow pumps:

- > 80% at 1 year
- > 70% at 2 years

The Selection Process: Risk Stratification

- REMATCH: LVAD benefit up to 2 years for most populations.
- More people can benefit due to the availability of devices.
- Most of the mortality occurred during the initial hospitalization for LVAD surgery.

 - Degree of organ compromise
 - Urgency at the time of implantation
 - Associated with irreversible organ dysfunction.

Can we identify the patient heading towards early death but not yet dying?
INTERMACS: Indications for Destination Therapy

Table 6: Patient Profile Levels—Adult Primary Implants: INTERMACS, June 2006–June 2010

<table>
<thead>
<tr>
<th>Level</th>
<th>DT patients No. (%)</th>
<th>All other LVADs No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Critical cardiogenic shock</td>
<td>36 (9)</td>
<td>467 (22)</td>
</tr>
<tr>
<td>2. Progressive decline</td>
<td>159 (41)</td>
<td>947 (44)</td>
</tr>
<tr>
<td>3. Stable but inotrope-dependent</td>
<td>101 (26)</td>
<td>374 (18)</td>
</tr>
<tr>
<td>4. Recurrent advanced HF</td>
<td>57 (15)</td>
<td>233 (11)</td>
</tr>
<tr>
<td>5. Exertion Intolerant</td>
<td>19 (5)</td>
<td>51 (2)</td>
</tr>
<tr>
<td>6. Exertion limited</td>
<td>7 (2)</td>
<td>34 (2)</td>
</tr>
<tr>
<td>7. Advanced NYHA class III</td>
<td>6 (2)</td>
<td>28 (1)</td>
</tr>
<tr>
<td>Total</td>
<td>385 (100)</td>
<td>2,134 (100)</td>
</tr>
</tbody>
</table>

DT, destination therapy; HF, heart failure; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; LVAD, left ventricular assist device; NYHA, New York Heart Association. P < 0.0001.

The Journal of Heart and Lung Transplantation, Vol 30, No 2, February 2011

Patient Selection: Risk Stratification

Individual Predictors of Poor Operative Outcome
- age
- female
- DM2
- prior CV surgery
- pre-existing RHF
- coagulopathy
- target organ failure (renal; liver; respiratory)

Risk Scores Predict Overall Outcome
- INTERMACS
- Leitz-Miller
- Columbia
- Apache II
- Seattle Heart Failure Score
Risk Score Limitations

• Lack prospective independent validation
• Outcome data only short-term
• Derived mainly in pts with *first generation* devices
• Under-representation of
 women
 African-Americans
 recidivism of drugs / alcohol
 DM2
 extremes of BMI

Who Should Get a VAD?
LVAD DT: Indications

- NYHA IV
- Life expectancy < 2 yrs
- Transplant ineligible
- Failure to respond to optimal medical management for > 60 of the last 90 days
- LVEF ≤ 25%
- Refractory cardiogenic shock or cardiac limitation
- Peak VO2 ≤ 12 mL·kg⁻¹·min⁻¹
- Inotropic dependence
- Recurrent symptomatic VT, Vfib with an untreatable arrhythmogenic substrate

LVAD DT: Contraindications

- Potentially reversible HF
- High surgical risk
- Recent or evolving stroke
- Neurological deficits impairing the ability to manage device
- Coexisting terminal condition (eg, metastatic cancer, cirrhosis)
- Abdominal aortic aneurysm 5 cm
- Biventricular failure in patients older than 65 years
- Active systemic infection or major chronic risk for infection
- Fixed pulmonary or portal hypertension
- Severe pulmonary dysfunction (eg, FEV1 ≤1 L)
- Impending renal or hepatic failure
- Multisystem organ failure
- Inability to tolerate anticoagulation
- HIT
- Psychiatric illness or lack of social support that may impair ability to maintain and operate VAD
LVAD DT: Relative Contraindications

- Age > 65 years, unless minimal or no other clinical risk factors
- CRF with serum creatinine > 3.0 mg/dL
- Severe chronic malnutrition
 - BMI < 21 kg/m² in males; <19 kg/m² in females
- Morbid Obesity
 - BMI > 40 kg/m²
- Mechanical ventilation
- Severe MS; moderate to severe AI; uncorrectable MR

LVAD: The Ideal Candidate?
LVADs: The Ideal Candidate?

3rd INTERMACS Annual Report:
Primary Cause of Mortality in DT VAD

<table>
<thead>
<tr>
<th>Primary cause of death</th>
<th>Early (<1 mo)</th>
<th>Later (<1 mo)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% of 35</td>
<td>n</td>
</tr>
<tr>
<td>Cancer</td>
<td>0</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Failure</td>
<td>2</td>
<td>5%</td>
<td>7</td>
</tr>
<tr>
<td>Cardiovascular: Other</td>
<td>4</td>
<td>11%</td>
<td>4</td>
</tr>
<tr>
<td>Device Malfunction</td>
<td>0</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>Hematologic: Other</td>
<td>0</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhage: Disseminated</td>
<td>2</td>
<td>5%</td>
<td>0</td>
</tr>
<tr>
<td>Intravas Coagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhage: Post-Operative</td>
<td>4</td>
<td>11%</td>
<td>0</td>
</tr>
<tr>
<td>surgery related</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhage: Pulmonary</td>
<td>2</td>
<td>5%</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhage: Other</td>
<td>0</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>Infection</td>
<td>1</td>
<td>2%</td>
<td>5</td>
</tr>
<tr>
<td>Other chronic illness</td>
<td>1</td>
<td>2%</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary: Respiratory Failure</td>
<td>2</td>
<td>5%</td>
<td>2</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>1</td>
<td>3%</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>11%</td>
<td>10</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>11%</td>
<td>11</td>
</tr>
<tr>
<td>CNS cause of death</td>
<td>4</td>
<td>11%</td>
<td>5</td>
</tr>
<tr>
<td>MOF</td>
<td>5</td>
<td>14%</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>62%</td>
<td>97</td>
</tr>
</tbody>
</table>

CNS, central nervous system: LVAD, left ventricular assist device.
Cardiac Failure includes RV Failure and VT/VF.

The Journal of Heart and Lung Transplantation, Vol 30, No 2, February 2011
VAD-Related Infections

Fig 1. Severe wound infection of the lateral wall uncovering the pump chamber and drive line.

Fig 2. Severe median wound infection with a visible outflow conduit.

Ann Thorac Surg 2000;70:538-541
VAD-Related Infections

- Prevalence 14% to 72%
- Drive line infections seed other parts of the LVAD including the pocket
- Antibiotic goal ideally bactericidal; typically bacteriostatic
- Biofilm forming bacteria & fungi

Strategies:

- Improvements in perioperative care
- Smaller blood pumps
- Better patient selection
- Future directions include fully implantable pumps

Ventricular Arrhythmia

Figure 1. Twelve-lead electrocardiogram showing ventricular fibrillation.
Patient was in VF for 12 hours!

Ventricular Arrhythmia

VAD-Related Bleeding

- **Hct / Hgb**
 - **Hemolysis**
 - Jaundice
 - ↑ Bili, LDH, pHgb
 - **Anatomical Bleed**
 - Pallor
 - Bili, LDH, pHgb
 - **Thrombosis**
 - Jaundice
 - ↑ Bili, LDH, pHgb

GI Bleed
- Guaiac Stools
- Endoscopy
- Capsulosity
- Body Imaging

VAD CTA
Mechanisms of GI Bleeding

- Increased intraluminal pressure
- Lowered pulse pressure; hypoperfusion

Axial Flow Device

- Decrease in HMW multimers leading to impaired coagulation

Acquired vWD

- vWF fragments
- Impaired platelet aggregation

Angiodysplasia

- GI Bleeding

VAD-Related Bleeding

Clinical Dilemma

Antithrombotic Strategy:
- ASA 81 – 325 mg daily
- Coumadin INR:
 - 1.5 - 2.0
 - 2.0 - 2.5 atrial fibrillation
 - hypercoagulability
 - thrombosis

What to do if recurrent bleeding?
What to do if recurrent thrombosis?

Stroke

Bleed
VAD-Related Syncope

- Syncope
 - Pump Obstruction
 - Pump Failure
 - Septal Suction
 - Pump Thrombosis
 - Poor intrinsic contractility
 - Fusion of aortic valve

Key Study: Ramp Echo

Ominous Sign #4: VAD-Related Syncope

Ramp Echocardiogram:
Limited study to evaluate ventricular chamber size and valvular hemodynamics in response to changes in VAD speed

Mechanical unloading of the ventricle increases with increasing VAD rpm

- **VAD Too fast**
 - Septal shift (leftward)
 - Aortic Valve closed
 - Worsening TR
 - Decreasing RV function

- **VAD Too Slow**
 - Ventricle dilated
 - Aortic valve opens w/ each beat
 - Worsening MR
Summary

- Despite best medical therapy, Stage D HF portends a poor prognosis

- LVADs provide mortality & quality of life improvement

- Longterm Challenges:
 - Patient Selection
 - Timing of intervention
 - Cost & accessibility
 - Ethics

Conclusions

- VADs have demonstrated significant mortality benefits in patients with end-stage cardiomyopathy

- Significant & varied morbidity

- Common chief complaints have more profound VAD-related diagnoses

- Management for optimal care continues to evolve with our understanding of VAD-related complications
Is there a New Dawn?

What have VADs taught us about the end-stage heart failure?

- VAD physiology & hemodynamics
- Potential Insights into Myocardial Recovery
- Future Directions

Heart Failure: Epidemiological Significance

- prevalence ~5 million Americans
- 500-600 000 new cases diagnosed annually
- annual costs range from $10 billion to $40 billion
- annual mortality rate for advanced disease > 50%
- aggregate 5 yr survival rate 50%
Non-Optimal Optimal Therapy

The Therapeutic Ceiling of Medical Therapy
Best Therapy ≠ Ideal Outcome

The “Economics” of Cardiac Transplantation
Demand >>> Supply

250-500,000 patients in the US are in Stage D HF (refractory; endstage)

mean survival of 3.4 months

one-year rate of 6% for patients who reach inotrope dependence.

80,000 to 150,000 patients with advanced heart failure could potentially benefit from HT in the United States every year